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The problem solved concerns the disturbance to a stream of shallow water due to 
an immersed slender body, with special application to the steady motion of ships 
in shallow water. Formulae valid to first order in slenderness are given for the 
wave resistance and vertical forces at both sub- and supercritical speeds. The 
vertical forces are used to predict sinkage and trim of ships and satisfactory 
comparisons with model experiments are made. 

1. Introduction 
This paper contains a systematic investigation of the problem of shallow-water 

flow past a fixed slender obstacle in a stream. This problem has a particular 
bearing on, and was suggested by, the behaviour of ships moving in still water of 
restricted depth, but may have application to a variety of problems involving 
shallow water, such as river flows past obstacles. However, for definiteness we 
shall here refer to the slender obstacle as a ship, and its surface as the hull. 

The case of a thin obstacle which extends with vertical sides all the way from 
the free surface to the bottom is well known, and in fact under the assumptions 
of linearized shallow-water theory this problem is entirely congruent to the 
steady aerodynamics of a thin wing. The first solution appears to have been 
given by Michell in his famous wave-resistance paper (Michell 1898); the result 
was also obtained by Joukowski in 1903 (Kostyukov 1959) and more recently 
by Laitone (Wehausen & Laitone 1960). Michell found that at  subcritical speeds 
(Fh = U/&h) < 1, where U is the stream speed, g the acceleration of gravity and 
h the stream depth) the drag force on the obstacle is zero, while at supercritical 

where B(z)  is the thickness distribution of the strut. This result is physically 
quite reasonable by analogy with aerodynamics, since the Froude number 
plays the same role as the Mach number, but a prediction of zero for subcritical 
wave resistance did not seem reasonable to naval architects, and this part of 
Michell’s paper has been largely ignored. In  any case he treated a situation where 
the obstacle was not particularly ship-like, and it was not obvious how to extend 
the work to the case where the ‘ship’ does not have vertical sides nor meets the 
bottom. 

The geometry of Michell’s strut is such that the vertical force and moment are 
zero. In  practice it is found that there is always a net downward force on a ship 
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moving in shallow water, and often also a trimming moment. The phenomenon 
is known as ‘squat’, and is a matter of some concern to every pilot and ship’s 
master who is responsible for taking a large vessel into harbours of restricted 
depth. At conventional speeds of conventional ships the downward force is 
capable of producing a ‘sinkage’ of one or two feet, which must be taken into 
account under some circumstances; the effect is even more pronounced for large 
high-speed vessels such as aircraft carriers where sinkages of 6-8ft. can occur. 
In  order to produce a theory for these vertical forces and moments we must 
abandon the idea of a strut extending from surface to bottom of the water, and 
attempt to take more account of the actual geometry of the body. 

The analysis which follows assumes the ship to be slender in the sense that 
it is longer than it is broad or deep, and uses the now well-known technique of 
matched asymptotic expansions (or ‘inner and outer expansions ’) to construct 
an approximate solution. This technique, developed by Kaplun for use in 
boundary-layer theory, has in recent years been used with success to solve a 
number of difficult singular-perturbation problems, and with the publication of 
a textbook (Van Dyke 1964) devoted to it, may be said to have become firmly 
established as a basic working tool of applied mathematics. The results obtained 
here by this means include an extension of Michell’s wave-resistance formulae 
to more general hull geometries, together with expressions for the vertical force 
and moment at  both sub- and supercritical speeds. The latter are used to give the 
sinkage and trim displacements of a ship, and satisfactory comparisons with 
experiments are shown. 

2. Exact formulation of the problem 
Suppose a fixed slender obstacle (ship) is a t  or near the free surface of a stream 

U of shallow water. The stream flows from left to right in the co-ordinate system 
of figure 1, and is of depth h. The fluid is taken to be inviscid and incompressible 
and the flow steady and irrotational, so that there exists a disturbance potential 
# satisfying Laplace’s equation and tending to zero suitably at  infinity, such that 
the total fluid velocity is UV(x + 4). 

On the ship’s hull surface the normal velocity vanishes, i.e. 

a(x + $)/an = 0. (2.1) 

The form of the normal derivative a/& may be written out explicitly in terms of 
any given equation for the hull surface. For instance, if we are given 

y = Y ( X , Z )  (2 .2 )  

as the equation of the hull, then equation (2.1) becomes 

On the bottom, assumed to be a plane surface z = - h, we have 

while the boundary conditions on the unknown free surface 
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are firstly that the pressure vanishes, i.e. 

and secondly that the free surface is a streamline, i.e. 

$a = C,+$xCx+$,d, 
z 

z=o 

U - 
-t 

z= -h 
FIGURE 1. Co-ordinate system. 

The sequel consists of an approximate solution to the above boundary-value 
problem for Laplace’s equation, based on the assumptions that the ship is slender 
and the water shallow. Specifically, if B is the beam, T the draft, L the length of 
the ship, we assume 

hlL, BIL, TIL = O(B)  (2.8) 

and Fi = U2/gh = O(I) ,  (2.9) 
where B is a small parameter. Incidentally, the last condition (2.9) above implies 
that the conventional Froude number 3’’ = U/J(gL)  is small, of order €4. This 
condition ensures that we are in a range where wave-making is significant; it has 
no other purpose, and indeed a re-examination of all approximations made in 
this paper indicates that the results are still valid in the limit as the free surface 
becomes a rigid wall, i.e. g+ 00 or Fh+ 0. Thus we are at the same time solving 
the problem of streaming past a slender obstacle sandwiched between two close 
parallel plates. 

3. The outer expansion 
We now propose to solve the problem systematically by putting together two 

asymptotic expansions, one called the outer expansion and valid far from the 
ship, and one the inner expansion valid near to the ship. In  this section we pursue 
the outer expansion in an ‘outer region’ defined by the following orders of 
magnitude of the co-ordinates 

(since these co-ordinates are dimensional quantities, the order statements are 
to be interpreted as describing their magnitude with respect to the ship length L;  
this convention will be followed throughout). It is now assumed that in this region 
$ possesses an asymptotic expansion with respect to E of the form 

(3.2) 

x,y = O(l ) ,  2 = O(s) (3.1) 

$ = $(I) + $2) + $(3) + . . . , 
6-2 
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which is ordered with respect to s so that qW+l) = o(qW) if and only if x, y, z are 
of the orders of magnitude given in equations (3.1). It is not in general necessary 
to further restrict the nature of the expansion a t  this time; however, hindsight 
tells us that in this problem the series at least starts out like a power series. We 
shall therefore take qYn) = O(en) in order to simplify the analysis; if it  should 
happen that this assumption leads to inconsistencies a t  a later stage we should 
then return to a more general expansion, which might, for instance, involve terms 
of order @loge (see Van Dyke 1964, p. 200, for further discussion of this point). 

Now by collecting terms of like order of magnitude in the Laplace equation 

V?X, ?I) 9 , 9 = - 4  -4  = -  
22: 5s ?Ill 

we have successively 
(3.3) 

(3.4) 

etc., where we areusing the notation V,Z,, 1/) to indicate a two-dimensional Laplacian 
in the (x, y)-plane. Thus @), qP) are linear in x ,  qY3), qV4) are quadratic in z, etc. We 
can immediately solve the above equations, making use of the bottom condition 
$Ln) = 0 on x = - h to obtain: 

q5g = 0, +g = 0, 

qg = -v2 (x, Z/)Ip(l)i 9% = - y x ,  1/) #@), 

(3.5) 1 $(I) = Y(l) (X,  y), ($2) = Y(2)(x, y), 
@3) = Y(3)(2, y)-~(z+h)2v?x,ll)Y(1)(X, y), 

etc., where Yn) (x, y) = O(en) (n = 1,2, ...), is a set of (so far arbitrary) functions 
of x and y. 

The partial differential equations satisfied by the unknown functions Y(n) are 
found by substituting the outer expansion in the free-surface conditions (2.6), 
(2.7). Thus, from the pressure condition we have 

- (2g/UZ)C = 2Y~)+2Y~)+2Yp(,3)+(Y~))2+(Y~))2+0(~).  

Notice that cis O(e2) since U2/g = O(s)  with respect to L by (2.9). That is, citself 
has an asymptotic expansion 

where 
g = g(Q+<(3)+Q4)+..., 13.6) 

C(2) = - (UZ/g) Y p ,  

9 ( 3 )  = - ( U y g )  [yp + &(YL1))2 + 2 r(Yc1) 21 ) 2 I, (3.7) etc. 

Now the kinematic free-surface condition gives 

( - h+ c(2))V&ll)Y(1)- hV,2,,,)Y(2)+ O(s4) 

= g)+<$3)+ g ~ p +  p ~ p +  0(€4), ( 3 4  
1.e. VTx,v) Y(1) = - ck2)/h, 

Vfx, 1/) W2) = - 1 /h c(2)V&., 11) - l /h ( cL3) + cL2) Ti1) + <c2) ?I Yc1) Y 1. 
Finally, on substitution of the previously determined expressions for g@), 5(3), . . . , 
we have as the equations for the Y(n), 

(3.9) 
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etc. Equation (3.9) is the usual equation of linearized shallow-water theory, 
which we should have expected in this problem; indeed the foregoing is merely 
a special derivation of this well-known theory. Of course the equation is also 
identical with that for linearized aerodynamics in two dimensions, if we identify 
Fh = U/d(gh)  with the free-stream Mach number. Equation (3.10) is an inhomo- 
geneous version of the same equation with a right-hand side involving a combina- 
tion of derivatives of the previously determined 'Y'l); the equations satisfied by 
further terms Y(3), Y(4), etc., will clearly be of a similar nature but with even more 
complicated right-hand sides. Since we shall not in this paper use even W2) in 
the above form, there is little point in writing down further terms, although there 
are no conceptual reasons why this could not be done if required. 

To an observer in the outer region the ship appears to have collapsed onto the 
plane y = 0 as e+O, since for this observer y must be 0(1) but the beam of the 
ship is of O(e). On the other hand, the z co-ordinates of both the ship and the 
observer are O(e), so that the draught of the ship remains (relatively) finite 
according to this observer as e-f 0. Thus we must seek solutions of equations (3.9) 
and (3.10) which are analytic everywhere except possibly on the plane y = 0, and 
this can be done by methods familiar in aerodynamics. 

For instance, if ph > 1, equation (3.9) is formally congruent to the one- 
dimensional wave equation, and the general solution which is symmetric in y and 
analytic for all y + 0 is 

y ( l ) ( X , Y )  = V X -  &Yb-- 1) IyI), 

Y(x) = Y(l)(x, 0). 

- J(F$-- 1) dY/dx  = Y ! ) ( X ,  0,) 

for some arbitrary function 

We prefer to take 

as our arbitrary function, setting 

(3.11) 

On the other hand, if Fh < 1, the equation (3.9) is elliptic, and its general solution 
may be written down using Green's theorem in the form 

with 

as the Green's function (or unit source potential). The supercritical result (3.1 1) 
may also be written in the form (3.12) if we set 

where H is the Heaviside unit step function. Near y = O , ,  the general solution 
(3.12) has a series expansion of the form 

Y(l)(X,  y) = Y(l)(X,  0) + / y I Y f ) ( X ,  0,) - +y2( 1 - F;) Y g ( X ,  0) + . . . , (3.13) 
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The solution for Y2) and indeed all higher approximations may also be written 
down by means of Green’s theorem. For if we denote the right-hand side of 
equation (3.10) by i2(2)(x, y), then the general solution of (3.10) in y 2 0 is 

Y‘2’(x,y) = Sm ~gupP)(L 0,) G ( x -  5, Y) +J aJm -m dTQ(2)(t,rl) a(%- t, y - 7). 
-m - W  

(3.15) 

That is, the boundary source distribution of (3.11) must be augmented by a 
spatial source distribution of density Clearly the solution for all Y(m) will be 
of this form with Q(%) as the right-hand side of the general equation for In  
practice, of course, the solution (3.15) is already extremely complicated for Y@), 
since i2@) involves quadratically so that the double integral is in reality a 
quadruple integral in the original unknown functionYg)(z, O+). We may note in 
passing, however, that in the limit as Fh-+O, equation (3.10) indicates that 

In  order to find the arbitrary functions Yh?(x, O+), Y g ) ( x ,  O+)), etc., we must 
match the inner and outer expansions, so we now proceed to determine a number 
of terms of the inner expansion. 

0, so that the solution for is of the same form as that for Y(l). 

4. The inner expansion 

co-ordinates : 

Thus, as seen by an observer in this region, neither breadth nor depth of the ship 
is small. We take an asymptotic expansion of the form 

The inner region is defined by the following orders of magnitude of the 

(4.1) z = O(l), y,z = O ( € ) .  

# = @(I) + @(2) + . . . ) (4.2) 

which is ordered with respect to e only SO long as x, y, z are of the magnitudes 
above. As with the outer expansion, we can assume, until and unless we have 
evidence to the contrary, that the series is of the nature of a power series in E ,  

i.e. that W) = O(em). 
Now Laplace’s equation is 

#w + $22 = V&, 2 )  # = - #%,, 

V&$)  @(I) = 0) v&2) @(2) = 0) 

v&z) Q(3) = - @(I) zz) vg,,, @(4) = - O(2) 2%) 

(4.3) 

so that, on collecting terms of like order in e, we have 

(4.4) t 
etc. That is, the individual terms in the asymptotic expansion satisfy two- 
dimensional Laplace or Poisson equations in the (y, z)-plane. 
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The limiting boundary conditions on the hull surface and on the free surface 
are the same as for a slender body in water of infinite depth (Tuck 1964), and only 
the results will be quoted here. On the hull surface we have 

(4.5) 1 a@(l)/aN = 0, a W / a N  = V N ,  

a@(3)/aN = v,CDp, am4)jaN = v,CDp, 

etc., where N is a normal to the cross-section curve at x, and v, is a definite 
function of the hull shape. Specifically, if we use the defining equation (2.2), we 
have 

(this is a slender-body approximation to the x-component of the unit normal to 
the hull). It follows that v, = O(E)  and that (Tuck 1964) 

v,dl = S’(x), (4.7) s 
where the integral is taken round the immersed cross-section of the hull at x and 
where X(x)  is the area of that section below the plane 2 = 0. Thus the flux of @(2) 

through the hull section at x is X’(x). On the free surface we have successively 
(Tuck 1964) 

} (4.8) 
a@(l)/az = 0, a@@)/aZ = 0, 

a@O/ax = - ( p / g )  [@gA+ 2@g) @&%+ @&I) @(I) II?/ + 2 ~ @ ( 1 ) 2 @ ( 1 ) ]  ?/ 
?dV ’ 

etc. Finally, on the bottom a W ) / a z  = 0 (4.9) 
for all n = 1,2, .... 

We now have a series of classical two-dimensional Neumann problems to solve 
separately for each cross-section x. Each Neumann problem will be indeterminate 
to the extent of a constant in its plane; that is, to the extent of an arbitrary 
function of x only. For instance, @(l) is clearly at most a constant with respect to 
y and x ,  since it has zero normal derivative on all boundaries in the (y, 2)-plane; i.e. 

@(I) = fl(x) (4.10) 

for some arbitrary function fl(z) which must be found by matching with the 
outer expansion. 

In  order to solve for @(2), let us split off the indeterminate part, writing 

@(2) = f 2 ( x )  + @p, (4.11) 

where f 2 ( x )  is arbitrary but @$? is uniquely defined by applying a suitable 
boundary condition at infinity. For instance, we can require 

@$)+u,lyI +o( l )  as y++m, (4.12) 

where the constant u = u(x)  is determinable from conservation of mass, and 
where the ‘o(1) ’ term implies that the difference between @g) and the stream 
u I yI tends to zero? as y-f k m. In fact it is clear that 

u = (1/2h) S’(X) (4.13) 

t By use of Green’s theorem it can be shown that this difference is actually of order e-lgllh. 
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since one half of the flux X’(x) across the hull section is channelled each way into 
width h as y-+  f co. Thus @$) is a uniquely determined potential which may be 
found by any of the classical methods for solving two-dimensional Neumann 
problems, analytically or numerically. 

The third term (D(3) in the inner expansion may be treated similarly. Some 
extra care is needed, however, since @(3) satisfies a Poisson rather than Laplace 
equation, and further involves a non-zero normal velocity across the free surface; 
we quote only the form of @@)resulting from splitting off contributions from these 
additional effects, namely, 

@(3) =f;@p-+f;“(l -B$)y2+ (Z+h)2B;]+f3, (4.14) 

wheref,(x) is the arbitrary ‘constant’ associated with W,f3(x) is a new arbitrary 
‘ constant ’, and (I>$) is as defined previously. 

5. Matching 
The analytical process of matching may be defined in a number of ways, 

ranging from crude but useful, to rigorous but indigestible; Chapter V of Van 
Dyke’s book discusses this question in detail. The usual compromise is to use his 
equation (5.24), namely: 

‘The m-term inner expansion of the (n-term outer expansion) = the n-term 
outer expansion of the (m-term inner expansion) for any pair of integers m, n. ’ 

(5.1) 

= [ Y q x ,  y)], (5.2) 

(5.3) 

For instance, the ‘1-term’ outer expansion is 

which has a ‘2-term’ inner expansion 

w ) ( x ,  0) + I ~ I  ‘rp(x, 0,) 

from (3.13), where ‘Yhl)(x,O+) is an arbitrary function of x while Y(l)(x,O) is 
determined from Yhl) by (3.14). On the other hand the ‘2-term’ innerexpansion is 

@(I)+ @@) = &(x)] + [f&) + @?)I, (5.4) 

which has a ‘1-term’ outer expansion 

fl(4 + 44 IYI 
from equation (4.12). 

Then equating the expressions (5.3) and (5.5) gives 

and 

Y f ) ( x ,  0,) = u(x)  = (1/2h)S’(x) 

fi(Z) = Y(l)(x, 0). 

(5.5) 

In aerodynamic terms equation (5.6) may be interpreted as an indication that, 
as far as the outer expansion is concerned, the ship looks like a symmetrical two- 
dimensional thin wing of thickness X(x)/h, which is physically plausible since it 
may be observed that this quantity is the mean thickness of the ship averaged 
over the depth of the channel. For instance, in the case of a vertical strut of 
thickness B(z)  spanning the stream, the Michell solution is recovered exactly 
since X = hB. 
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Equations (5.7), (5.6) and (3.14) determine ff(z) completely; specifically we 

Continuing the matching process, we have the ‘ 2-term ’ outer expansion as 

+ p) = yyX, y) +vyX, y) (5.9) 

with a ‘3-term’ inner expansion 

[fiI + [u IY ]  +Y(2)(x, 011 + [ JyI ‘pf)(z, 0,) - By2( 1 - Fi)f;’] (5.10) 

(where we have substituted for Y(I) and Yg) the valuesfrom (5.6) and (5.7)). On 
the other hand the ‘3-term’ inner expansion is 

+ cD(2) + O(3) = [fi(X)] + [fz(x) + c D p j  

f cf; 02)- +$[( 1 - F i ) y 2  + F i ( z  +h)2]  +f3(x ) ] ,  (5.11) 

with a ‘2-term’ outer expansion, 

[fi+ulYll+[f2+f;ulYl - % ( l - m Y z l .  (5.12) 

The expressions (5.10) and (5.12) must be identical, which will be achieved if 

Y f ) ( X ,  0,) = uf; 

= f;W S’(x)/h, (5.13) 

and fz(z) = Y@)(X, 0). (5.14) 

Thusfz(x) is completely determinate in principle via equation (3.15) with y = 0; 
however, in practice except when FIb = 0, equation (3.15) remains too complicated 
for explicit computations. If Fh = 0 then the relation between WZ) and Yf) is still 
(3.14) so thatf2(x) is obtained by replacing 8’ by fix’ in equation (5 .8 ) .  

6. The inner expansion of the pressure and forces 
The hydrodynamic pressure is obtained from Bernoulli’s equation 

-PMP UZ) = 24Cc + 41 + 4; + @. (6.1) 
Substituting the ‘3-term’ inner expansion (5.11) into (6.1) gives 

- [g;] + [ ( f ; ) 2 +  z a g  + (og)z+ (0g;)2+ 2f;]+ 0 ( € 3 ) ,  (6.2) 

P = i31(x)l+ [ P z ( 4  +.2(Y, z ;  4 1  + Ok”, 

where PAX) = -Pu2f;(x), (6.4) 

Pz(y, 2; x) = - p U 2 [ a q  + $(@‘*;))”+ 4(@gy].  

$p u2 
i.e. (6.3) 

(6.5) 

(6.6) 

P z ( 4  = -PU2[f&) + w;(4)217 
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Thus the pressure is composed of two parts, both of which are expanded into an 
asymptotic series in 8. The ‘interaction’ pressure 

P l ( 4  + P Z ( 4  + . - * (6.7) 

is a function of x only and measures interactions between sections (at least when 
Ph < 1) since it is defined by integral transforms like (5.8). On the other hand the 
‘ non-interaction ’ pressure 

16.8) 
varies around the cross-section, and is calculated by solving a sequence of Neu- 
mann problems in each cross-sectional plane separately. There is no interaction 
between the pressure Pz at one section x and that a t  another, except in the sense 
that the formula (6.6) involves the first derivative @gL of @Lz) with respect to x. 

PAY, 2; 4 + q y ,  2; x) + - f .  

To first order the pressure is dominated by pl(x) ,  i.e. 

p = -pUy;(x)  + O(e2) (6.9) 

Physically, this may be explained by noting that (6.9) would follow by neglecting 
all but the streamwise component of the disturbance velocity. A slender body in 
a shallow stream causes disturbance velocities of equal orders of magnitude in all 
directions; under such circumstances the velocity increment or decrement in the 
streamwise direction contributes more to the disturbance pressure than trans- 
verse disturbances. Shallowness is essential to this argument; if the stream is not 
shallow the streamwise disturbance of a slender body is an order of magnitude 
smaller than transverse disturbances, which leads Lo contributions to the 
pressure of equal orders of magnitude from all 3 disturbance components. 

Some further comments on the result (6.10) are appropriate. The fact that the 
first-order pressure is dependent only on x implies, for instance, that the pressure 
is predominantly constant around the cross-section of the hull, irrespective of the 
shape of the section. Any dependence on the shape of the section can arise 
formally only with the term Pz(y, x ;  x) of the second approximation, whereas the 
only information from the hull geometry needed to calculate p l ( x )  is the cross- 
sectional area curve X(x). Further, we may observe thatp,,(x) is the hydrodynamic 
pressure everywhere in the fluid at cross-section x, even on the bottom. One 
might expect a very large velocity and hence abnormally low pressure at 
any point where a cross-section almost touches bottom, but the conclusion from 
the present analysis is that to fist order the pressure at such a point is no lower 
than anywhere else on the same cross-section. Presumably this implies that the 
fluid passes to the side of any such close gap so as to keep the velocity there 
comparable with that elsewhere on the cross-section. Of course there is nothing 
to prevent the general order of the pressure over such a cross-section from being 
lower than that on a neighbouring cross-section; however, any such effect is not 
critically dependent on there being only a small distance to the bottom locally, 
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but rather on the overall distribution of cross-sectional area of the hull relative 
to the depth of water. 

Let us now use the expression (6.10) for the first-order pressure on the hull to 
calculate forces to first order. Now it is easy to show (Newman & Tuck 1964) that 
if B(x) is the beam of the ship at  section x (i.e. the intersection of the section at x 
with the plane x = 0 ) ,  and S(x )  is the previously defined cross-sectional area of 
the section at x, then 

(6.11) 

for any function pl(x), the double integral being taken over the portion of the 
hull below the plane z = 0 and the single integrals along the length of the ship. 
Equation (6.11) is an identity and does not require any slenderness assumption. 

However, if the ship is slender, the left-hand side of (6.11) is the first-order 
hydrodynamic force on the ship. Thus we can assert that to first order the hydro- 
dynamic force on the ship consists of a vertical component p1(z)B(z) per unit 
length and a streamwise component p l (x )S ‘ (x )  per unit length. 

Thus, to first order the vertical force is 

F = - p U 2  d~j’i(x)B(x) (6.12) I 
s 
I 

(positive upwards), the trim moment about the y-axis is 

M = pu2 dzx f ; ( x )B(x )  (6.13) 

(positive with bow up, stern down), and the wave resistance is 

dxf;(z)S‘(z). (6.14) 

Finally, on substituting the expression (5.8) for fl(x) and further manipulating 
the resulting double integral, we find in the subcritical case Fh = U/,/(gh) < 1, 

R = -pU 

(6.15) 

(6.16) 

R = 0, (6.17) 

while in the supercritical case Fh > 1, 

(6.18) 

(6.19) 

(6.20) 
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Equations (6.17) and (6.20) are generalizations of Michell’s result (1.1). Thus 
we find (as we should expect from the aerodynamic analogy) that the subcritical 
wave resistance is always zero to first order, while the supercritical resistance is 
a positive definite expression which reduces to that given by Michell for the case 
of a vertical strut, where 

Since we still have a result which, from the point of view of the naval architect, is 
unreasonable in that the wave resistance is zero in the more important sub- 
critical range, it would appear desirable to pursue the study of the wave resistance 
to a second approximation. There is every reason to expect a non-zero result at 
second order, since we shall then be introducing some effects which may be 
described as finite-depth effects, and which are known to give a non-zero wave 
resistance. One should observe that, while the aerodynamic analogy no longer 
applies exactly at  second order, the behaviour of the wave resistance of a ship in 
shallow water will be qualitatively similar to that of an airplane passing through 
the sound barrier, involving a very sharp rise in resistance as the critical velocity 
is approached. The phenomenon may be experienced by paddling a canoe in 
shallow water. 

As mentioned earlier, carrying the theory to second order is a formidable if 
worthwhile task, and we shall not attempt to go further than the first-order 
results in the present paper. However, whereas the first-order results for wave 
resistance are rather disappointing, the results for the vertical force and moment 
are of considerable interest. Instead of investigating the formulae for these 
quantities in detail, it is somewhat more convenient to use Archimedes principle 
to give the resulting vertical displacement (sinkage) and trim angle, and this is 
done in the following section. 

X(x) = hB(x). 

7. Sinkage and trim 

written in the form 
The vertical force and moment given by equations (6.15)-(6.19) may be 

where C,, C, are non-dimensional coefficients dependent only on the geometry 
of the ship, but taking different values according to whether Fh 2 1. For Fh < 1 
we have 

27TL (7.3) 

c,, = -- dxzB(z)S’(x) dxx:ZB(x). 
2 ‘s Is 
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Suppose now the ship responds to these forces, and experiences a ‘sinkage’ s 
defined as the downward vertical displacement at  x = 0, and a ‘trim ’ t defined 
as the bow-up angle of rotation about x = 0. Then to first order in 8, Archimedes’ 
principle gives 

pg (s+xt)B(x)dx = -P, (7.7) 

(7.8) 

s 
s pg ( s  + xt) xB(x) dz = M .  

These are simultaneous equations which may be solved to give s and t .  It is again 
convenient to write the solution in non-dimensional form, setting 

s/L = C.$‘i/Jll- Fil ,  
t = cTF;/Jp-q’ 
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FIGURE 2. Subcritical sinkage according to theory and experiment at various depths. 

where the coefficients C,, CT are related to the force and moment coefficients 
C,, C,, by the equations 

Cs = (C, - a~n/l)/fl -a/% (7.11) 

cT = (CM-pcF)/(l -ap), (7.12) 

a = xB(x)dx L B(x)dx,  (7.13) s I f  with 

A computer program has been developed to evaluate the coefficients C,, C,, C,, 
C, for any ship, defined by given functions S(x) ,  B(x).  

It may be observed that neither the speed U nor the depth h occurs explicitly 
in any of equations (7.1), (7.2), (7.9) or (7.10), but only through the combination 

Fi/JI1-PiI  = U2/J1U2-ghl. (7.15) 
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Thus within either the sub- or supercritical range, the variation with speed of 
(say) the sinkage is always given by the expression (7.15), irrespective of the shape 
of the ship or the depth of the water. If we were to plot sinkage against speed U ,  
changing the shape of the ship would change only the vertical scale, while changing 
the depth would change only the horizontal scale; clearly it is more desirable to 
plot against Froude number Fh, in which case a unique curve is obtained for a 
given ship independent of the depth h. 
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FIGURE 3. Comparison between theoretical and experimental sinkage and trim 
at h/L = 0.125. ----, Theory; -, experiment. 

Pigure 2 shows such a curve for the theoretical subcritical sinkage, together 
with some experimental results reported by Graff, Kracht & Weinblum (1964) 
from tests with a model of the same ship. The experiments were performed at 
anumber of different depths, and curves are shown for values of h/L of O.O5,0-125, 
0.167 and 0.208. The first-order shallow-water theory predicts a unique curve, 
but this curve is clearly just the limit as h+ 0 with Fh held fixed; further terms in 
the asymptotic expansion would provide an explicit dependence on h. The agree- 
ment is quite good at the lo,we$ depth tested (h/L = 0-05) for Fh < 0-7, but 
deteriorates both as the depth increases and as the Froude number gets nearer to 
unity. Fortunately it is relatively low values of both h/L and Fh which are of 
practical importance. 

It is clear that good agreement cannot be expected near to the critical speed, 
where the first-order theory predicts infinite values for all forces. By analogy 
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with the aerodynamics of transonic flow, we should expect that in order to 
predict correctly the finite values obtained in this region we should need to con- 
sider some special non-linear effects, and this will not be done here. The actual 
behaviour found by Graff et al. through the critical region is shown in figure 3 for 
the case h/L = 0.125. One effect of non-linearity near critical speed seems to be 
to force the trim to take up its very large supercritical value a little below critical 
speed; this quickly swamps the small subcritical trim, and at about Fh = 0.9 the 
supercritical value is already achieved. At the same Froude number the sinkage 
has reached its maximum, and is about to decrease as non-linear ‘trans-critical’ 
effects push it towards its low supercritical value. 

Figure 3 also shows an interesting qualitative feature of measured sinkage and 
trim values, which is confirmed by the theoretical curves given, namely, the fact 
that sinkage is the dominant phenomenon at subcritical speeds, whereas trim is 
dominant at supercritical speeds. Further, it  is found by experiment that the 
large subcritical sinkage is always positive (i.e. downward) and the supercritical 
trim is likewise positive (i.e. bow-up). The theory predicts this behaviour 
explicitly in two special cases. First, if the ship has fore-and-aft symmetry it is 
possible to prove that 

cT =CAI = 0 for Fh < 1, 

and c, = c, = 0 for Fh > 1, 

so that for such a symmetrical ship we predict a zero subcritical trim and zero 
supercritical sinkage. Secondly, there exists a non-trivial class of ships (‘simple 
ships ’) such that S(z)/B(x) = const. For such ships we can prove rigorously that 

and 

C, > 0 for Fh < 1, 

C, > 0 for Fh > 1, 

so that simple ships must experience a downward force in the subcritical range 
and a bow-up moment in the supercritical range. Although practical ship shapes 
are neither symmetrical nor ‘simple’, they are sufficiently close to being so, that 
the above results retain a qualitative validity in the general case. 
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